Calculas 1
| Front | Defintion of the Derivative |
| Back | \[\lim_{x \to a}\frac{f(x)-f(a)}{x-a}\]which is the same as\[\lim_{h \to 0}\frac{f(a+h)-f(a)}{h}\] |
| Front | Derivative of logarithmic function (base e) |
| Back | \[\frac{d}{dx} \ln |x| = \frac{1}{x}\] |
| Front | Limits Quotient Rule |
| Back | \[ \lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} \] where the limits of f(x) and g(x) exist and \(\lim_{x \to a} g(x) \neq 0 \). |