Calculas 1

Math

Calculas 1

Sample Data

Front Defintion of the Derivative
Back \[\lim_{x \to a}\frac{f(x)-f(a)}{x-a}\]which is the same as\[\lim_{h \to 0}\frac{f(a+h)-f(a)}{h}\]
Front Derivative of logarithmic function (base e)
Back \[\frac{d}{dx} \ln |x| = \frac{1}{x}\]
Front Limits Quotient Rule
Back \[ \lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} \] where the limits of f(x) and g(x) exist and \(\lim_{x \to a} g(x) \neq 0 \).
0 Cards
0 Likes
0 Ratings
0 Downloads