| Front | How would you solve the below for c?[$]c^2 = \frac{121}{169}[/$] |
| Back | [$]\sqrt{c^2} = \pm \sqrt{\frac{121}{169}}[/$][$]c = \pm \sqrt{\frac{121}{169}}[/$][$]c = \pm \frac{\sqrt{121}}{\sqrt{169}}[/$][$]c = \pm \frac{11}{13}[/$] |
| Source | https://www.khanacademy.org/math/algebra/rational-exponents-and-radicals/rational-exponents-intro/v/basic-fractional-exponents |
| Add Reverse | |
| Extra Info | Note the very important plus or minus symbol. |
| Tags | AlgebraI Khan.Academy Math |
| Front | What is the discriminant in a quadratic equation? |
| Back | The part inside the square root in a quadratic equation. |
| Source | https://www.khanacademy.org/math/algebra/quadratics/solving-quadratics-using-the-quadratic-formula/v/quadratic-formula-3 |
| Add Reverse | y |
| Extra Info | [$]b^2 - 4ac[/$] |
| Tags | AlgebraI Khan.Academy Math Trivia |
| Front | Evaluate:[$]\sqrt[3]{- \frac{1}{8}}[/$] |
| Back | [$]- \frac{\sqrt[3]{1}}{\sqrt[3]{8}} = - \frac{1}{2}[/$] |
| Source | |
| Add Reverse | |
| Extra Info | |
| Tags | AlgebraI Khan.Academy Math Trivia |