Nuclear physics

Physics
Nuclear physics

Sample Data

Front Derive an expression for the form factor $F(q)$, assuming that the nuclear density is given by a uniform sphere of radius R.
Back $F(q)=\int\rho_{ch}(r)e^{i\mathbf{q\cdot{r}}}dV\newline$If $\rho(r)=aR$, then $F(q)=\int_0^R{ar}e^{i\mathbf{q\cdot{r}}}dV\newline$$=-\frac{ia}{q^2}(qr+1)e^{i\mathbf{q\cdot{r}}}|^R_0\newline=\frac{-a}{q^2}-\frac{ia}{q^2}(qR+i)e^{iqR}$
Tags Nuclear_Structure
Front State and Define the nuclear magneton
Back $\mu_n=\frac{e\hbar}{2m_p}=3.15\times10^{-8}eV/T$and is a unit for expressing magnetic dipole moments of nucleons.
Tags Angular_Momentum Spin definitions
Front Liquid drop model (3 terms)
Back $\cdot$liquids incompressible$\newline$$\cdot$Density constant$\therefore$ radius $\propto n^{1/3}$, n is no. of molecules in drop$\cdot$each molecule bound with energy - a$\newline$$\cdot$molecules only bound onto drop on one side $\therefore$ there's a reduction in PE $\propto 4\pi R^2T\newline$$\cdot$Include electrostatics in model: work done to bring shell from $\infty$ to radius R$\newline$$\newline B(A,Z)=a_vA-a_SA^{2/3}-a_cZ^2A^{-1/3}$
Tags Nuclear_Structure
0 Cards
0 Likes
5 Ratings
0 Downloads