| Front | [latex]Let $\gamma[a, b] \to C$ be a (piecewise $C_1$) closed curve and $z_0$ a pointnot on $\gamma$; then $I(\gamma;z_0)$[/latex] |
| Back | is an integer. |
| Tags |
| Front | [latex]The inside of a closed curve $\gamma$ is defined by[/latex] |
| Back | [$]\{ z | I(\gamma; z)\not = 0\}[/$] |
| Tags |
| Front | [latex]Define $\cos{z}, z\in \mathbb{C}$[/latex] |
| Back | [$]\cos{z} = \frac{e^{iz} + e^{-iz}}{2}[/$] |
| Tags |